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Magnetic field-driven domain-wall propagation in the flow regime is investigated in �Ga,Mn�As ferromag-
netic semiconductor layers. Square-shape magnetic domains with an unexpected orientation of their edges, at
� /8 with respect to the anisotropy axes, are found. This is shown to arise from the effect of tetragonal
magnetic anisotropy on domain-wall dynamics. Using a one-dimensional model for domain-wall motion and
modeling domain growth by contour dynamics the shape and orientation of domains and their field range for
existence are well reproduced. These results point to the key role of the vectorial nature of the order parameter
in the dynamics of ferromagnetic domains.
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Anisotropy plays an important role in the formation of
complex phase boundaries in dynamical processes of phase
transitions, as for example crystal growth from the liquid
phase in directional solidification experiments,1–3 or in mul-
tiphase fluid flow in a Hele-Shaw cell.3,4 In particular the
role of surface-tension anisotropy in the selection of the fin-
gering or dendritic patterns was recognized. Anisotropy is
also intimately related to the formation of quasiequilibrium
domain structures for various two-dimensional physical sys-
tems: submonolayer of adsorbed atoms on a metal substrate,5

Si�111� surface near a structural phase transition,6 intermedi-
ate state of type-I superconductor films,7 ferrimagnetic
garnets8–12 and ultrathin ferromagnetic films.13,14 Anisotropy
of the interface energy or of the diffusion coefficient results
in an alignment of lamellar domains5,7 along specific crystal-
lographic directions, and produces triangular6,13 or square5

domain shapes instead of the circular ones observed in the
isotropic case.

In ferri- and ferromagnetic systems, the growth of a mag-
netic domain by propagation of a magnetic domain wall
�DW� is rather singular due to the vectorial nature of the
order parameter. Magnetic field-driven DW dynamics was
extensively studied in films with out-of-plane easy axis.15–18

Different dynamical flow regimes are expected to occur, de-
pending on the field strength and on the DW structure. At
low drive, the DW structure is steady �steady regime� and the
DW differential mobility �field derivative of the velocity� is
constant up to the so-called Walker limit. Above this limit the
magnetization within the wall precesses around the applied
field �precessional regime�. The DW oscillates back and forth
during its motion, which leads to a negative average differ-
ential mobility. The wall structure might become unstable
with the generation of Bloch lines16 or wall-displacement
waves.19 At high drive, the DW recovers a positive and con-
stant differential mobility. The first evidences for anisotropic
DW motion were found in orthoferrites8,20 and in garnet
films grown under strong compression.9–11 These materials
present an orthorhombic anisotropy: in addition to an out-of-
plane easy axis, the films have a secondary in-plane easy
axis. This produces static domains elongated in the direction
of the in-plane easy axis21 and dynamic elongation of do-

mains in the perpendicular direction.9 This phenomenon is
usually explained as a result of an anisotropic mobility in
orthoferrites8 or of an anisotropic Walker velocity limit in
garnets.11 However, for garnets, the experimental maximum
velocity11 is found in many cases in poor agreement with the
theoretical predictions,21 which suggests that the contribution
of anisotropy to the dynamics of magnetization reversal in
not well understood. Furthermore the conditions for exis-
tence of an anisotropic DW motion �field range, temperature�
have not been investigated. Therefore, it is particularly inter-
esting to study a system presenting a different symmetry as
an in-plane biaxial symmetry �tetragonal anisotropy�. This is
also expected to provide new insights into the specificity of
interface propagation in ferromagnetic materials compared to
other physical systems.

Diluted ferromagnetic semiconductors such as �Ga,Mn�As
are appropriate materials for this purpose. Owing to the
carrier-mediated ferromagnetism between the Mn ions, the
magnetic anisotropy is mainly band engineered because of
the very low saturation magnetization of �Ga,Mn�As, and the
quenching of the Mn orbital moment �for a review see, e.g.,
Ref. 22�. Band engineering via strain control in epitaxial
layers provides a mean to obtain a perpendicular-to-plane
easy axis.23 The respective contributions of the weak uniaxial
and biaxial in-plane anisotropies can be tuned by
temperature.24 Moreover, our recent results on field-driven
DW propagation show that, owing to a depinning field much
smaller than in ferromagnetic ultrathin metallic layers, not
only the precessional flow regime but also the end of the
steady flow regime can be observed.18 In that first study de-
voted to the determination of micromagnetic parameters
from these two dynamical regimes domain anisotropy, al-
though observable in some range of field and temperature,
was not analyzed.

In this Rapid Communication we concentrate on the
formation of square magnetic domains in ferromagnetic
�Ga,Mn�As. The edges of the domains are found to be ori-
ented at � /8 of the in-plane secondary easy axes. We show
that this shape and orientation originate from the effect of the
tetragonal anisotropy of the sample on DW dynamics.

The sample consists of an annealed Ga0.93Mn0.07As epil-
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ayer of thickness d=50 nm grown on a relaxed
Ga0.902In0.098As buffer deposited on a GaAs substrate. The
Curie temperature TC is 130 K and the magnetic easy axis is
perpendicular to the sample plane. The magnetization M�T�
was obtained from magnetometry measurement and the an-
isotropy constants from ferromagnetic resonance �FMR�
experiments.25 In the temperature range of interest �80 to
110 K, the perpendicular magnetic anisotropy constant Ku is
10–80 times larger than the in-plane biaxial anisotropy con-
stant K4� �difference between the �100� axes and the �110�
axes� and more than 20 times larger than the in-plane
uniaxial constant K2� �difference between the �110� and

�11̄0� axes�. Interestingly, K2� vanishes around T=100 K so
that the sample presents a pure tetragonal anisotropy. Kerr
microscopy is used for the observation of DW motion �see
Refs. 23 and 26 for more details�. The DW velocity is mea-
sured using a magnetic pulse field technique.17,18 The DW
width � and the damping coefficient � are obtained from the
analysis of the experimental velocity curve.18

Figures 1�a�–1�c� show the magnetic domain expansion
and domain shapes for increasing values of the applied mag-
netic field. These differential images result from the substrac-
tion of an image taken before the application of a field pulse
from the image taken after the pulse. The white corona rep-
resents the displacement of the DW as observed after the
pulse. The black holes at the center correspond to domain
areas before the pulse. In Fig. 1�a� irregular interfaces are
seen. They result from DW pinning by defects.23,26 In Figs.
1�b� and 1�c� smooth interfaces show that DWs move in the
defect-independent flow regime. It is clearly seen in Figs.
1�a� and 1�b� that the magnetic domains exhibit a square
shape. This square shape has almost disappeared at higher
field �Fig. 1�c��. Square domains have a fixed orientation.
Surprisingly their edges are aligned neither along the �100�
in-plane easy axes nor along the �110� in-plane hard axes but
at 19�5 degrees of a �110� axis, i.e., nearly at � /8. More-
over, when the direction of magnetization inside the domains
is reversed the orientation of the square domains is rotated
by �� /4, i.e., toward a symmetrical position with respect to
a �110� axis, as displayed in Fig. 1�d�. This indicates that the
domain orientation is not controlled by pinning defects. The
fourfold symmetry of the domain shape suggests a contribu-
tion of the in-plane biaxial magnetic anisotropy.

In order to investigate the field dependence of domain
anisotropy, the DW velocity was measured along the diago-
nal of the square domains and perpendicularly to their edges,
as shown by arrows on the inset of Fig. 1�e�. The measured
values are reported as a function of the applied field in Fig.
1�e�. The velocity along the diagonal is at most 15% larger
than the edge velocity. DW anisotropy is observed in the
field range from �5 to 25 mT. The lower limit is close to the
end of the steady regime, as determined from the Walker
field ��0HW=��0M /2=4 mT�.18 This suggests that the ap-
pearance of this anisotropy is related to the onset of the mag-
netization precession around the applied field inside the DW.

In order to obtain a more quantitative insight into aniso-
tropic DW motion we use the standard one-dimensional �1D�
model.15,16 Indeed, this model has been successfully used to
describe the steady regime and the high-field linear preces-

sional regime in �Ga,Mn�As layers.18 We introduce the in-
plane biaxial magnetic anisotropy, which up to now has not
been taken into account. In this framework the DW is mod-
eled as an infinite plane wall with a homogeneous magnetic
structure within the film thickness. The DW is assumed to lie
in the xz plane, the DW velocity being along the y direction.
The magnetic field H0 is applied along z. The magnetization
vector inside the DW is described by the polar angle � and
the azimuthal angle �. The DW surface energy � is defined
as �=	edy, where e=e0+e1 is constructed as

e0 = A���2 + sin2 ���2� + Ku sin2 � , �1�

e1 = ��0/2�M2 sin2 � sin2 � − K4� sin4 � sin2�2�� + �p��

− �0MH0 cos � . �2�

The term e0 contains the exchange energy �exchange con-
stant A� and the uniaxial magnetic anisotropy energy. The
term e1 contains the DW demagnetizing energy, the in-plane
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FIG. 1. �Color online� Magneto-optical images showing the
square domains at T=100 K for three field values shown by arrows
in �e�. Images �a�–�c� are differential images �see text�. Image �d�:
square domain edge with up �white� or down �black� magnetization
inside the domain showing the +� /8 or −� /8 orientation of the
diagonal of the square domain with respect to a �110� axis �dotted
black lines�. �e� DW velocity curve at T=100 K. In the field range
where square domains are observed the red triangles and the black
circles represent the velocity measured along the diagonal and per-
pendicularly to the edges of the domains, respectively, as shown in
the inset. The error bars represents the width of the velocity distri-
bution measured for a set of domains over a �536 �m�2 area. The
dashed line represents the asymptotic linear fit of the high-field
precessional regime.
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biaxial magnetic anisotropy energy and the Zeeman energy.
�p is the angle between the normal to the DW and the �110�
axis. The prime denotes the y-derivative. Note that for the
static case � is minimum for DWs aligned along the in-plane
easy axes. The equations for DW motion are derived from
the Landau-Lifshitz equations integrated through the wall
thickness.15,16 Treating the e1-part of the DW energy in per-
turbation theory, we obtain

v = vWh −
��̇

�
, �3�

�̇ =
	HW

1 + �2 
h − �sin�2�� − 
4 sin�4�� + �p���� , �4�

where v is the DW normal velocity, 	 the gyromagnetic fac-
tor �	�0�, vW=	��0M /2 the Walker velocity, HW=�M /2
the Walker field, and h=H0 /HW. 
4= �4 /3�K4� / ��0M2 /2� is
positive ��100� in-plane easy axes�. In the steady regime ��̇
=0� the DW velocity varies linearly with the field: v=vWh.
In the precessional regime ��̇�0� one defines an average
velocity as

�v� = vW�h −
�

	HWT

 , �5�

	HWT

�1 + �2�
= �

0

� d�

h − �sin�2�� − 
4 sin�4�� + �p���
, �6�

where T is the period of the magnetization precession. Equa-
tion �5� shows that the precession reduces the DW velocity.
Moreover, one finds from Eqs. �3� and �4� that the value of
the magnetic field separating the steady and the precessional
regimes depends on the DW orientation �p. Therefore, the

DW velocity can be anisotropic due to the anisotropic term
sin�4��+�p�� in Eq. �4�. Note that Eq. �4� results from the
competition between the torque exerted by the applied field
on the magnetization vector inside the DW and in-plane
forces resulting from the demagnetizing field and in-plane
anisotropy. Let us describe the onset of DW anisotropic ve-
locity. As far as h is smaller than hW1 �hW1= �1−
4� for 
4
�1 /4 or hW1= �1 /8
4+
4� for 
4�1 /4� a solution of Eq.
�4� in the steady regime ��̇=0� can be found for any orien-
tation �p of the DW. The velocity is then linear with the field
and isotropic. At h=hW1 �velocity vW1� the precessional re-
gime is reached for four orientations of the DW, �p1=
−� /8+n� /2, n= �0,3�, corresponding to the normal to the
edges of the square domains. Hence, above hW1 the DW
velocity becomes anisotropic, being smaller along the �p1
directions. As h further increases, the range of orientations
�p with a solution still in the steady regime �larger velocity�
shrinks around four values �p2=+� /8+n� /2, n= �0,3� cor-
responding to the diagonals of the square domains. At hW2
=1+
4, the precessional regime is finally reached for those
�p2 values at a velocity vW2=vW�1+
4�. Above hW2 the DW
velocity remains anisotropic �see the insets of Fig. 2� but this
anisotropy vanishes at large field �h
1 and h

4�, as
shown by Eq. �6�.

Figure 2 shows a comparison between the predicted and
measured velocities in the directions �p=−� /8 �normal to
the edge� and �p=� /8 �along the diagonal�. As proposed in
Ref. 18, the slopes of the low �1�h�1.5� and high drive
�h�12� linear regimes were fitted with the predictions for
the steady and the linear precessional regimes, respectively
�see also Fig. 1�e��. � and � are thus obtained self-
consistently. For 
4, we use the value deduced from FMR
measurements �0.6�. The discrepancy between the predicted
and measured velocities at low drive �h�1� is due to DW
pinning. It prevents a precise comparison of the predicted h1
value with experimental results since the width of the
measured velocity distribution is larger than the difference
between the calculated velocities v��p=� /8� and v��p
=−� /8�. Beyond the linear steady-state regime �1.5�h
�9� the predicted average velocity is smaller than the mea-
sured one. This points to the limitations of the 1D model to
describe DW motion. Indeed it does not take into account the
temporal instabilities of DW motion �generation and propa-
gation of horizontal Bloch lines� nor the spatial instabilities
such as the wall-displacement waves.19 This discrepancy
may also suggest a modification of the dissipation mecha-
nisms in this field range. In contrast, the predicted values for
hW2 and vW2 coincide well with the end of the observed
steady-state regime for �p=� /8. Note that hW2 lies below the
field corresponding to the experimental maximum velocity,
which is located well inside the precessional regime and
should not be confused with a Walker peak. Moreover the
upper boundary of the anisotropic regime �h=5.5–7.0� is
also in good agreement with the predictions. Therefore, the
field range for the existence of an anisotropic DW velocity is
well accounted for by the model.

The domain growth is modeled using contour dynamics.27

Pseudospectral techniques28 are used to solve for the time
evolution of the local tangent angle ��s�, from which the
�x�s� ,y�s�� coordinates of the interface are computed by ba-
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FIG. 2. �Color online� Experimental �squares� and theoretical
�full curves� DW velocity curves at T=100 K. In the field range
where square domains are observed the red full squares and the blue
empty squares represent the velocity measured along the diagonal
and perpendicularly to the edges of the domains, respectively. The
red �blue� full line is the normal velocity calculated for �p=� /8
�−� /8� orientation of the DW. The full �empty� circles show the
maximum �minimum� velocity obtained from contour dynamics for
two field values h=1.65 and h=3.8. The dashed black line is the
velocity obtained when neglecting the in-plane magnetic anisotropy.
The Walker velocities without anisotropy �vW� and with biaxial an-
isotropy �vW1 and vW2� are indicated. The parameters are HW

=4 mT, �=3 nm, �=0.28, and 
4= 0.6. The insets show the an-
gular dependence of the normal velocity �in units of vW�.
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sic differential geometry. The normal velocity is obtained
from Eq. �5� and �6�. The dynamics of the domain shape is
shown for h�hW2 in Fig. 3�a� �h=1.65� and 3�b� �h=3.8�.
First the square domain shape is obtained �Fig. 3�a��, in ex-
cellent agreement with the experimental observations. As h
increases the square shape evolves toward a rounded shape
�Fig. 3�b��. For still larger field strength, for example such
that corresponds to Fig. 1�c�, contour dynamics shows that
the shape of domains remains close to circular as expected
according to Eq. �5� and �6�. The domain orientation is also
very well reproduced. The mean velocities of vertices and

edges are indicated by circles in Fig. 2. They are smaller and
larger, respectively, than the maximal and minimal velocity
obtained from Eq. �5� and �6�, the difference vanishing with
increasing field.

In conclusion, we have shown that magnetic anisotropy of
tetragonal symmetry results in the growth of square shaped
magnetic domains. Domain walls are found to be aligned at
� /8 from the anisotropy easy axes, i.e., away from the di-
rections that minimize the interface energy. The 1D model
for DW motion, brought into play together with contour dy-
namics, captures the main features of the physics of aniso-
tropic domain growth �domain shape and orientation, field
range�, although it underestimates the DW velocity. The ex-
istence of an angle between the anisotropy easy axis and the
direction of maximum DW velocity in dynamical regimes
�� /2 for � symmetry, � /8 for � /2 symmetry� is specific to
ferromagnetic systems and is associated to the vectorial na-
ture of the order parameter. Interestingly, the combination of
in-plane biaxial and uniaxial anisotropy of similar impor-
tance that may occur in some range of temperature for fer-
romagnetic semiconductors should lead to the observation of
complex domain shapes. The occurrence of anisotropic DW
velocity should have important implications for the study of
DW motion in micro- or nanoribbons for information storage
and transport.
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FIG. 3. Magnetic domain growth from contour dynamics at
h=1.65 and at h=3.8. The coordinates of the DW are scaled with
respect to the perimeter of the initial circular shape L�0�. Time is
scaled with respect to L�0� /vW. Domain shapes are shown from
t=0 to t=0.4 by step 0.05 in �a� and from t=0 to t=1.1 by step 0.1
in �b�. The directions of minimal and maximal displacements for the
time interval, as calculated from Eqs. �3�–�6� are shown by dashed
lines.
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